Electronic Journal of Liver Tumor ›› 2023, Vol. 10 ›› Issue (4): 15-22.
• Expert • Previous Articles Next Articles
Zhang Shihui1, Li Zhuo1, Yihebali·Chi2, Shi Susheng1,*
Received:
2023-04-17
Online:
2023-12-31
Published:
2024-02-05
Contact:
*Shi Susheng, E-mail: shishusheng@sina.com
Zhang Shihui, Li Zhuo, Yihebali·Chi, Shi Susheng. Research progress of driver gene alteration and targeted therapy for intrahepatic cholangiocarcinoma[J]. Electronic Journal of Liver Tumor, 2023, 10(4): 15-22.
[1] BANALES J M, CARDINALE V, CARPINO G, et al.Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(5): 261-280. [2] BANALES J M, MARIN J J G, LAMARCA A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. [3] LENDVAI G, SZEKERCZÉS T, ILLYÉS I, et al. Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis[J]. Pathol Oncol Res, 2020, 26(1): 3-15. [4] SUH K S, ROH H R, KOH Y T, et al.Clinicopathologic features of the intraductal growth type of peripheral cholangiocarcinoma[J]. Hepatology, 2000, 31(1): 12-17. [5] VIJGEN S, TERRIS B, RUBBIA-BRANDT L.Pathology of intrahepatic cholangiocarcinoma[J]. Hepatobiliary Surg Nutr, 2017, 6(1): 22-34. [6] KOMUTA M.Intrahepatic cholangiocarcinoma: Tumour heterogeneity and its clinical relevance[J]. Clin Mol Hepatol, 2022, 28(3): 396-407. [7] LIAU J Y, TSAI J H, YUAN R H, et al.Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features[J]. Mod Pathol, 2014, 27(8): 1163-1173. [8] DONG L Q, PENG L H, MA L J, et al.Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma[J]. J Hepatol, 2020, 72(5): 896-908. [9] SIA D, HOSHIDA Y, VILLANUEVA A, et al.Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes[J]. Gastroenterology, 2013, 144(4): 829-840. [10] RHEE H, KO J E, CHUNG T, et al.Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma[J]. Liver Int, 2018, 38(1): 113-124. [11] WANG X Y, ZHU W W, WANG Z, et al.Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities[J]. Theranostics, 2022, 12(1): 260-276. [12] XU S, GUO Y, ZENG Y, et al.Clinically significant genomic alterations in the Chinese and Western patients with intrahepatic cholangiocarcinoma[J]. BMC Cancer, 2021, 21(1): 152. [13] WANG L, ZHU H, ZHAO Y, et al.Comprehensive molecular profiling of intrahepatic cholangiocarcinoma in the Chinese population and therapeutic experience[J]. J Transl Med, 2020, 18(1): 273. [14] PU X, ZHU L, LI F, et al.Target molecular treatment markers in Intrahepatic Cholangiocarcinoma based on Chinese population[J]. Pathol Res Pract, 2020, 216(9): 153116. [15] MIAO X, HU J, CHAI C, et al.Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line derived from a Chinese patient[J]. Cancer Cell Int, 2022, 22(1): 418. [16] CAIRNS R A, MAK T W.Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities[J]. Cancer Discov, 2013, 3(7): 730-741. [17] BOSCOE A N, ROLLAND C, KELLEY R K.Frequency and prognostic significance of isocitrate dehydrogenase 1 mutations in cholangiocarcinoma: a systematic literature review[J]. J Gastrointest Oncol, 2019, 10(4): 751-765. [18] MONDESIR J, WILLEKENS C, TOUAT M, et al.IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives[J]. J Blood Med, 2016, 7: 171-180. [19] XU X, ZHAO J, XU Z, et al.Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity[J]. J Biol Chem, 2004, 279(32): 33946-33957. [20] CRISPO F, PIETRAFESA M, CONDELLI V, et al.IDH1 Targeting as a New Potential Option for Intrahepatic Cholangiocarcinoma Treatment-Current State and Future Perspectives[J]. Molecules, 2020, 25(16): 3754. [21] DANG L, WHITE DW, GROSS S, et al.Cancer-associated IDH1 mutations produce 2-hydroxyglutarate[J]. Nature, 2009, 462(7274): 739-744. [22] SCIACOVELLI M, FREZZA C.Oncometabolites: Unconventional triggers of oncogenic signalling cascades[J]. Free Radic Biol Med, 2016, 100: 175-181. [23] TOMMASINI-GHELFI S, MURNAN K, KOURI F M, et al. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease[J]. Sci Adv, 2019, 5(5): eaaw4543. [24] CAREY B W, FINLEY L W, CROSS J R, et al.Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells[J]. Nature, 2015, 518(7539): 413-416. [25] LU H, DALGARD C L, MOHYELDIN A, et al.Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1[J]. J Biol Chem, 2005, 280(51): 41928-41939. [26] JIANG L, SHESTOV A A, SWAIN P, et al.Reductive carboxylation supports redox homeostasis during anchorage-independent growth[J]. Nature, 2016, 532(7598): 255-258. [27] ICARD P, POULAIN L, LINCET H.Understanding the central role of citrate in the metabolism of cancer cells[J]. Biochim Biophys Acta, 2012, 1825(1): 111-116. [28] KATOH M.Fibroblast growth factor receptors as treatment targets in clinical oncology[J]. Nat Rev Clin Oncol, 2019, 16(2): 105-122. [29] LEMMON M A, SCHLESSINGER J.Cell signaling by receptor tyrosine kinases[J]. Cell, 2010, 141(7): 1117-1134. [30] KATOH M, NAKAGAMA H.FGF receptors: cancer biology and therapeutics[J]. Med Res Rev, 2014, 34(2): 280-300. [31] ORNITZ D M, ITOH N.The Fibroblast Growth Factor signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(3): 215-266. [32] CHEN H, MARSIGLIA W M, CHO M K, et al.Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases[J]. Elife, 2017, 6: e21137. [33] XIE Y, SU N, YANG J, et al.FGF/FGFR signaling in health and disease[J]. Signal Transduct Target Ther, 2020, 5(1): 181. [34] NEUMANN O, BURN T C, ALLGÄUER M, et al. Genomic architecture of FGFR2 fusions in cholangiocarcinoma and its implication for molecular testing[J]. Br J Cancer, 2022, 127(8): 1540-1549. [35] CHA J Y, MADDILETI S, MITIN N, et al.Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 Ⅲb C3 isoform[J]. J Biol Chem, 2009, 284(10): 6227-6240. [36] CHA J Y, LAMBERT Q T, REUTHER G W, et al.Involvement of fibroblast growth factor receptor 2 isoform switching in mammary oncogenesis[J]. Mol Cancer Res, 2008, 6(3): 435-445. [37] BELOV A A, MOHAMMADI M.Grb2, a double-edged sword of receptor tyrosine kinase signaling[J]. Sci Signal, 2012, 5(249): pe49. [38] LIN C C, MELO F A, GHOSH R, et al.Inhibition of basal FGF receptor signaling by dimeric Grb2[J]. Cell, 2012, 149(7): 1514-1524. [39] LI F, PEIRIS M N, DONOGHUE D J.Functions of FGFR2 corrupted by translocations in intrahepatic cholangiocarcinoma[J]. Cytokine Growth Factor Rev, 2020, 52: 56-67. [40] ABOU-ALFA G K, SAHAI V, HOLLEBECQUE A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(5): 671-684. [41] DUTT A, SALVESEN H B, CHEN T H, et al.Drug-sensitive FGFR2 mutations in endometrial carcinoma[J]. Proc Natl Acad Sci U S A, 2008, 105(25): 8713-8717. [42] WANG Y, DING X, WANG S, et al.Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein[J]. Cancer Lett, 2016, 380(1): 163-173. [43] TSUJIE M, IWAI T, KUBO S, et al.Fibroblast growth factor receptor 2 (FGFR2) fusions in Japanese patients with intrahepatic cholangiocarcinoma[J]. Jpn J Clin Oncol, 2021, 51(6): 911-917. [44] GUO C, LIU Z, YU Y, et al.TP53 /KRAS Co-Mutations Create Divergent Prognosis Signatures in Intrahepatic Cholangiocarcinoma[J]. Front Genet, 2022, 13: 844800. [45] KENDRE G, MURUGESAN K, BRUMMER T, et al. Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma[J]. J Hepatol, 2022: S0168-8278(22)03328-1. [46] GAO Z, CHEN J F, LI X G, et al.KRAS acting through ERK signaling stabilizes PD-L1 via inhibiting autophagy pathway in intrahepatic cholangiocarcinoma[J]. Cancer Cell Int, 2022, 22(1): 128. [47] YI M, NIU M, XU L, et al.Regulation of PD-L1 expression in the tumor microenvironment[J]. J Hematol Oncol, 2021, 14(1): 10. [48] MARCUS R, FERRI-BORGOGNO S, HOSEIN A, et al.Oncogenic KRAS Requires Complete Loss of BAP1 Function for Development of Murine Intrahepatic Cholangiocarcinoma[J]. Cancers (Basel), 2021, 13(22): 5709. [49] IKENOUE T, TERAKADO Y, NAKAGAWA H, et al.A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion[J]. Sci Rep, 2016, 6: 23899. [50] COLYN L, ALVAREZ-SOLA G, LATASA MU, et al.New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming[J]. J Exp Clin Cancer Res, 2022, 41(1): 183. [51] ZOU S, LI J, ZHOU H, FRECH C, et al.Mutational landscape of intrahepatic cholangiocarcinoma[J]. Nat Commun, 2014, 5: 5696. [52] DONG L, LU D, CHEN R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1): 70-87.e15. [53] CARBONE M, YANG H, PASS H I, et al.BAP1 and cancer[J]. Nat Rev Cancer, 2013, 13(3): 153-159. [54] ZHANG Y, SHI J, LIU X, et al.BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. [55] BONONI A, GIORGI C, PATERGNANI S, et al.BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation[J]. Nature, 2017, 546(7659): 549-553. [56] NAGL NG JR, PATSIALOU A, HAINES D S, et al.The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest[J]. Cancer Res, 2005, 65(20): 9236-9244. [57] YANG S Z, WANG A Q, DU J, et al.Low expression of ARID1A correlates with poor prognosis in intrahepatic cholangiocarcinoma[J]. World J Gastroenterol, 2016, 22(25): 5814-5821. [58] TESSIRI S, TECHASEN A, KONGPETCH S, et al.Therapeutic targeting of ARID1A and PI3K/AKT pathway alterations in cholangiocarcinoma[J]. PeerJ, 2022, 10: e12750. [59] JACOBI O, ROSS J S, GOSHEN-LAGO T, et al.ERBB2 Pathway in Biliary Tract Carcinoma: Clinical Implications of a Targetable Pathway[J]. Oncol Res Treat, 2021, 44(1-2): 20-27. [60] XIAO P, MENG Q, LIU Q, et al.IGF2BP1-mediated N6-methyladenosine modification promotes intrahepatic cholangiocarcinoma progression[J]. Cancer Lett, 2023, 557: 216075. [61] SONG F, CHEN F Y, WU S Y, et al.Mucin 1 promotes tumor progression through activating WNT/β-catenin signaling pathway in intrahepatic cholangiocarcinoma[J]. J Cancer, 2021, 12(23): 6937-6947. [62] ZHOU Q, WANG Y, PENG B, et al.The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma[J]. BMC Cancer, 2013, 13: 244. [63] WISHART D S, FEUNANG Y D, GUO A C, et al.DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082. [64] ANGELAKAS A, LAMARCA A, HUBNER R A, et al.Ivosidenib: an investigational drug for the treatment of biliary tract cancers[J]. Expert Opin Investig Drugs, 2021, 30(4): 301-307. [65] ABOU-ALFA G K, MACARULLA T, JAVLE M M, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(6): 796-807. [66] CRISCUOLO D, AVOLIO R, CALICE G, et al.Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer[J]. Cells, 2020, 9(4): 828. [67] FAN B, MELLINGHOFF I K, WEN P Y, et al.Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors[J]. Invest New Drugs, 2020, 38(2): 433-444. [68] JAVLE M, ROYCHOWDHURY S, KELLEY R K, et al.Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study[J]. Lancet Gastroenterol Hepatol, 2021, 6(10): 803-815. [69] MERIC-BERNSTAM F, BAHLEDA R, HIERRO C, et al.Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A PhaseⅠDose-Expansion Study[J]. Cancer Discov, 2022, 12(2): 402-415. [70] SHI G M, HUANG X Y, WEN T F, et al.Pemigatinib in previously treated Chinese patients with locally advanced or metastatic cholangiocarcinoma carrying FGFR2 fusions or rearrangements: A phase Ⅱ study[J]. Cancer Med, 2023, 12(4): 4137-4146. [71] Zhu C, Xue J, Wang Y, et al.Efficacy and safety of lenvatinib combined with PD-1/PD-L1 inhibitors plus Gemox chemotherapy in advanced biliary tract cancer[J]. Front Immunol, 2023, 14: 1109292. [72] LEE C K, CHON H J, CHEON J, et al.Trastuzumab plus FOLFOX for HER2-positive biliary tract cancer refractory to gemcitabine and cisplatin: a multi-institutional phase 2 trial of the Korean Cancer Study Group (KCSG-HB19-14)[J]. Lancet Gastroenterol Hepatol, 2023, 8(1): 56-65. [73] CHEN R, ZHANG Y, LIN K, et al.Cost-Effectiveness Analysis of Capecitabine Plus Oxaliplatin Versus Gemcitabine Plus Oxaliplatin as First-Line Therapy for Advanced Biliary Tract Cancers[J]. Front Pharmacol, 2022, 13: 871262. [74] SERRA-CAMPRUBÍ Q, VERDAGUER H, OLIVEROS W, et al.Human Metastatic Cholangiocarcinoma Patient-Derived Xenografts and Tumoroids for Preclinical Drug Evaluation[J]. Clin Cancer Res, 2023, 29(2): 432-445. [75] ZHOU J, SUN Y, ZHANG W, et al.PhaseⅠb study of anlotinib combined with TQB2450 in pretreated advanced biliary tract cancer and biomarker analysis[J]. Hepatology, 2023, 77(1): 65-76. [76] VAQUERO J, KEITEL V.Deciphering FAK in intrahepatic cholangiocarcinoma: A novel therapeutic target?[J]. J Hepatol, 2021, 75(4): 765-767. |
[1] | Hu Hanjie, Huang Zhen, Zhao Hong. Application of lymph node dissection in intrahepatic cholangiocarcinoma [J]. Electronic Journal of Liver Tumor, 2020, 7(4): 13-16. |
[2] | Li Shupei, Yu Chenxi, Lai Fengyong, Song Peng, Du Chunxia, Yao xuesong. Local therapy for unresectable intrahepatic cholangiocarcinoma [J]. Electronic Journal of Liver Tumor, 2020, 7(4): 44-47. |
[3] | Yan Xue, Han Yue. Application and progression of ablation combined with targeted therapies in the treatment of liver cancer [J]. Electronic Journal of Liver Tumor, 2020, 7(3): 36-38. |
[4] | Meng HE, Ning Lyu, Ming ZHAO. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Research Progress and Future Perspectives [J]. Electronic Journal of Liver Tumor, 2019, 6(4): 14-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||