[1] 王祎, 王峻峰, 杨超, 等. 数字医学技术在肝脏分段及解剖性肝切除中的应用现状[J/CD]. 中华肝脏外科手术学电子杂志, 2023, 12(1): 6. [2] 何静, 陈胜男, 夏楠, 等. 计算机辅助手术系统在儿童肝脏原发性间叶肿瘤手术中的应用[J]. 肝胆胰外科杂志, 2022, 34(9): 513-518. [3] RONNEBERGER O, FISCHER P, BROX T.U-Net: Convolutional Networks for Biomedical Image Segmentation[J]. Lecture Notes in Computer Science, 2015, 9351: 234-241. [4] HITENDRA G, BHISHAM S, SHASHI S, et al.Spoofing detection system for e-health digital twin using EfficientNet Convolution Neural Network[J]. Multimedia Tools Appl, 2022, 81(19): 26873-26888. [5] ZHUANG F, QI Z, DUAN K, et al.A Comprehensive Survey on Transfer Learning[J]. Proc IEEE, 2021, 109(1): 43-76. [6] Morid M A, Borjali A, Del Fiol G.A Scoping Review Of Transfer Learning Research On Medical Image Analysis Using Imagenet[J]. Comput Biol Med, 2021, 128: 104115. [7] NAN Y, JU J, HUA Q, et al.A-MobileNet: An approach of facial expression recognition[J]. Alex Eng J, 2022, 61(6): 4435-4444. [8] JIA L, WANG Y, ZANG Y, et al.MobileNetV3 With CBAM for Bamboo Stick Counting[J]. IEEE Access, 2022, 10: 53963-53971. [9] ROY A G, NAVAB N, WACHINGER C.Recalibrating Fully Convolutional Networks with Spatial and Channel 'Squeeze & Excitation' Blocks[J]. IEEE Trans Med Imaging, 2019, 38(2): 540-549. [10] Arnon A, Brian T, David B, et al.Deep Residual Learning in Spiking Neural Networks[J]. Semantic Scholar, 2021. [11] YAO Z, CAO Y, ZHENG S, et al. Cross-Iteration Batch Normalization[J]. Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021, abs/2002.05712: 12331-12340. [12] SU J, LIU Z, ZHANG J, et al.DV-Net: Accurate liver vessel segmentation via dense connection model with D-BCE loss function[J]. Knowl-Based Syst, 2021, 232: 107471. [13] ABRAHAM N, KHAN N.Multimodal Segmentation with MGF-Net and the Focal Tversky Loss Function[J]. International MICCAI Brainlesion Workshop, 2019: 191-198. [14] JHA S, SON L H, KUMAR R, et al.Neutrosophic image segmentation with Dice Coefficients[J]. Measurement, 2019, 134: 762-772. [15] DOU H, KARIMI D, ROLLINS C K, et al.A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI[J]. IEEE Trans Med Imaging, 2021, 40(4): 1123-1133. [16] THABTAH F, HAMMOUD S, KAMALOV F, et al.Data imbalance in classification: Experimental evaluation[J]. Inf Sci, 2020, 513: 429-441. [17] ZHAO B, ZHANG X, LI H, et al.Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions[J]. Knowl-Based Syst, 2020, 199: 105971. [18] PASSALIS N, TEFAS A, KANNIAINEN J, et al.Deep Adaptive Input Normalization for Time Series Forecasting[J]. IEEE Trans Neural Netw Learn Syst, 2020, 31(9): 3760-3765. [19] HU C, ZHANG J, YUAN H, et al.Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19[J]. Appl Energy, 2022, 309: 118458. [20] TAN Z, LUO L, ZHONG J.Knowledge transfer in evolutionary multi-task optimization: a survey[J]. Appl Soft Comput, 2023, 138: 110182. [21] 叶晓敏, 谢富强. X线检查用于小动物临床应注意的问题[J]. 中国兽医杂志, 2006, 42(7): 2. [22] DAVID J S, KYLE M G, YUKI H, et al.Integrated radiofrequency array and animal holder design for minimizing head motion during awake marmoset functional magnetic resonance imaging[J]. Neuroimage, 2019, 193: 126-138. [23] 胡峻峰, 张志超, 赵亚凤, 等. 基于迁移学习的竹片缺陷识别[J]. 西北林学院学报, 2021, 36(5): 190-196. |