[1] SUNG H, FERLAY J, SIEGEL R L, et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2021, 71(3): 209-249. [2] ZHOU J, SUN H, WANG Z, et al.Guidelines for the diagnosis and treatment of primary liver cancer (2022 edition)[J]. Liver cancer, 2023, 12(5): 405-444. [3] AHN J C, TRAN N H, YANG J D.Systemic therapy in advanced hepatocellular carcinoma[J]. Clin Mol Hepatol, 2023, 29(2): 516-9. [4] CHENG A L, QIN S, IKEDA M, et al.Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma[J]. J Hepatol, 2022, 76(4): 862-873. [5] 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024 年版)[J]. 肝癌电子杂志, 2024,11(2) :1-26. [6] ABOU-ALFA G K, LAU G, KUDO M, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma[J]. NEJM Evidence, 2022, 1(8): EVIDoa2100070. [7] ABOU-ALFA G K, LAU G, KUDO M, et al. Plain language summary of the HIMALAYA study: tremelimumab and durvalumab for unresectable hepatocellular carcinoma (liver cancer)[J]. Future Oncol, 2023, 19(38): 2505-2516. [8] GE Z, PEPPELENBOSCH M P, SPRENGERS D, et al.TIGIT, the next step towards successful combination immune checkpoint therapy in cancer[J]. Front Immunol, 2021, 12: 699895. [9] KONG X, ZHANG J, CHEN S, et al.Immune checkpoint inhibitors: breakthroughs in cancer treatment[J]. Cancer Biol Med, 2024, 21(6): 451-472. [10] STANIETSKY N, SIMIC H, ARAPOVIC J, et al.The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity[J]. Proc Nat Acad Sci U S A, 2009, 106(42): 17858-17863. [11] BOLES K S, VERMI W, FACCHETTI F, et al.A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC[J]. Euro J Immunol, 2009, 39(3): 695-703. [12] LEVIN S D, TAFT D W, BRANDT C S, et al.Vstm3 is a member of the CD28 family and an important modulator of T-cell function[J]. Euro J Immunol, 2011, 41(4): 902-915. [13] YU X, HARDEN K, GONZALEZ L C, et al.The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57. [14] STENGEL K F, HARDEN-BOWLES K, YU X, et al.Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering[J]. Proc Nat Acad Sci U S A, 2012, 109(14): 5399-5404. [15] BANTA K L, XU X, CHITRE A S, et al. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8(+) T cell responses[J]. Immunity, 2022, 55(3): 512-526.e9. [16] KYRYSYUK O, WUCHERPFENNIG K W.Designing cancer immunotherapies that engage T cells and NK cells[J]. Ann Rev Immunol, 2023, 41: 17-38. [17] GUAN X, HU R, CHOI Y, et al.Anti-TIGIT antibody improves PD-L1 blockade through myeloid and T(reg) cells[J]. Nature, 2024, 627(8004): 646-655. [18] CHEN X, XUE L, DING X, et al.An Fc-competent anti-human TIGIT blocking antibody ociperlimab (BGB-A1217) elicits strong immune responses and potent anti-tumor efficacy in pre-clinical models[J]. Front Immunol, 2022, 13: 828319. [19] PREILLON J, CUENDE J, RABOLLI V, et al.Restoration of T-cell effector function, depletion of tregs, and direct killing of tumor cells: the multiple mechanisms of action of a-TIGIT antagonist antibodies[J]. Mol Cancer Tther, 2021, 20(1): 121-131. [20] FINN R S, QIN S, IKEDA M, et al.Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905. [21] KIM T W, BEDARD P L, LORUSSO P, et al.Anti-TIGIT antibody tiragolumab alone or with atezolizumab in patients with advanced solid tumors: a phase 1a/1b nonrandomized controlled trial[J]. JAMA Oncol, 2023, 9(11): 1574-1582. [22] LLOVET J M, CASTET F, HEIKENWALDER M, et al.Immunotherapies for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172. [23] FINN R S, RYOO B Y, HSU C H, et al.Results from the MORPHEUS-liver study: phaseⅠb/Ⅱ randomized evaluation of tiragolumab (tira) in combination with atezolizumab (atezo) and bevacizumab (bev) in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (uHCC)[J]. J Clin Oncol, 2023, 41(16 Suppl): 4010. [24] FAN J, REN Z, HSU C,et al. AdvanTIG-206: anti-TIGIT monoclonal antibody (mAb) ociperlimab (BGB-A1217; OCI) plus anti-programmed cell death protein 1 (PD-1) mAb tislelizumab (TIS) plus BAT1706 versus (vs) TIS plus BAT1706 as first-line treatment for advanced hepatocellular carcinoma (HCC)[J].2022, 40(4 Suppl): TPS488-TPS. [25] BADHRINARAYANAN S, COTTER C, ZHU H, et al.IMbrave152/SKYSCRAPER-14: a phaseⅢ study of atezolizumab, bevacizumab and tiragolumab in advanced hepatocellular carcinoma[J]. Future Oncol, 2024, 20(28): 2049-2057. [26] JUDGE S J, DARROW M A, THORPE S W, et al.Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas[J]. J Immunother Cancer, 2020, 8(2): e001355. [27] YANG Z, PENG Y, XU J, et al.PVR/TIGIT and PD-L1/PD-1 expression predicts survival and enlightens combined immunotherapy in lung squamous cell carcinoma[J]. Transl Oncol, 2022, 24: 101501. [28] LIU P C, FENG X W, ZHAO X M, et al.Abnormal expression and clinical significance of surface receptors on natural killer cells in the peripheral blood of patients with non-small cell lung cancer[J]. Neoplasma, 2022, 69(4): 931-939. [29] LEE B H, KIM J H, KANG K W, et al.PVR (CD155) expression as a potential prognostic marker in multiple myeloma[J]. Biomedicines, 2022, 10(5): 1099. [30] YU L, LIU X, WANG X, et al.TIGIT(+) TIM-3(+) NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus-related hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1942673. [31] DAVERN M, FITZGERALD M C, BUCKLEY C E, et al.PD-1 and TIGIT blockade differentially affect tumour cell survival under hypoxia and glucose deprived conditions in oesophageal adenocarcinoma; implications for overcoming resistance to PD-1 blockade in hypoxic tumours[J]. Transl Oncol, 2022, 19: 101381. [32] SUMIDA T S, DULBERG S, SCHUPP J C, et al.Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells[J]. Nat Immunol, 2022, 23(4): 632-642. [33] FRENTZAS S, KAO S, GAO R, et al.AdvanTIG-105: a phase I dose escalation study of the anti-TIGIT monoclonal antibody ociperlimab in combination with tislelizumab in patients with advanced solid tumors[J]. J Immunother Cancer, 2023, 11(10): e005829. [34] TANG H, FOSTER N R, GROTHEY A, et al.Comparison of error rates in single-arm versus randomized phaseⅡ cancer clinical trials[J]. J Clin Oncol, 2010, 28(11): 1936-1941. [35] GRAYLING M J, DIMAIRO M, MANDER A P, et al.A review of perspectives on the use of randomization in phase Ⅱ oncology trials[J]. J Natl Cancer Inst, 2019, 111(12): 1255-1262. [36] RUBINSTEIN L V, KORN E L, FREIDLIN B, et al.Design issues of randomized phase Ⅱ trials and a proposal for phaseⅡ screening trials[J]. J Clin Oncol, 2005, 23(28): 7199-7206. [37] BOOTH C M, CALVERT A H, GIACCONE G, et al.Design and conduct of phase II studies of targeted anticancer therapy: recommendations from the task force on methodology for the development of innovative cancer therapies (MDICT)[J]. Euro J Cancer, 2008, 44(1): 25-29. [38] SHARMA M R, KARRISON T G, JIN Y, et al.Resampling phase Ⅲ data to assess phase II trial designs and endpoints[J]. Clin Cancer Res, 2012, 18(8): 2309-2315. [39] LANGRAND-ESCURE J, RIVOIRARD R, ORIOL M, et al.Quality of reporting in oncology phase Ⅱ trials: a 5-year assessment through systematic review[J]. PloS one, 2017, 12(12): e0185536. [40] BINNEWIES M, ROBERTS E W, KERSTEN K, et al.Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24(5): 541-550. [41] LIU J, YUAN Q, REN J, et al.Single-cell sequencing and bulk RNA sequencing reveal a cell differentiation-related multigene panel to predict the prognosis and immunotherapy response of hepatocellular carcinoma[J]. Chin Med J, 2023, 136(4): 485-487. [42] CHEN J, YUAN Q, GUAN H, et al.Unraveling the role of ADAMs in clinical heterogeneity and the immune microenvironment of hepatocellular carcinoma: insights from single-cell, spatial transcriptomics, and bulk RNA sequencing[J]. Front Immunol, 2024, 15: 1461424. [43] ROAYAIE S, OBEIDAT K, SPOSITO C, et al.Resection of hepatocellular cancer ≤2 cm: results from two Western centers[J]. Hepatolog, 2013, 57(4): 1426-1435. [44] POSTOW M A, SIDLOW R, HELLMANN M D.Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2): 158-168. [45] WEI S C, DUFFY C R, ALLISON J P.Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8(9): 1069-1086. [46] LLOVET J M, KELLEY R K, VILLANUEVA A, et al.Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. [47] ANNESE T, TAMMA R, RIBATTI D.Update in TIGIT immune-checkpoint role in cancer[J]. Front Oncol, 2022, 12: 871085. |