[1] GIRAUD J, CHALOPIN D, BLANC J F, et al.Hepatocellular carcinoma immune landscape and the potential of immunotherapies[J]. Front Immunol, 2021, 12:655697. [2] 国家艾滋病和病毒性肝炎等重大传染病防治科技专项“中医药延缓乙型肝炎相关肝癌进展的综合治疗方案研究”课题组,中国医师协会中西医结合分会肿瘤专业委员会, 等. 原发性肝癌经肝动脉化疗栓塞术后中西医结合康复专家共识[J]. 临床肝胆病杂志, 2021, 37(7):1545-1549. [3] LEI Q, CHEN H, ZHENG H, et al.Zygomatic bone metastasis from hepatocellular carcinoma and the therapeutic efficacy of apatinib: a case report and literature review[J]. Medicine (Baltimore), 2019, 98(18):e14595. [4] KIM S, CHOI Y, KWAK D W, et al.Prognostic factors in hepatocellular carcinoma patients with bone metastases[J]. Radiat Oncol J, 2019, 37(3):207-214. [5] HARDING J J, ABU-ZEINAH G, CHOU J F, et al.Frequency, morbidity, and mortality of bone metastases in advanced hepatocellular carcinoma[J]. J Natl Compr Canc Netw, 2018, 16(1):50-58. [6] ATTILI V S, BABU K G, LOKANATHA D, et al.Bone metastasis in hepatocellular carcinoma: need for reappraisal of treatment[J]. J Cancer Res Ther, 2008, 4(2):93-94. [7] SHI Y, QIN N, ZHOU Q, et al.Role of IQGAP3 in metastasis and epithelial-mesenchymal transition in human hepatocellular carcinoma[J]. J Transl Med, 2017, 15(1):176. [8] HUANG J, HU W, LIN X, et al.FRZB up-regulated in hepatocellular carcinoma bone metastasis[J]. Int J Clin Exp Pathol, 2015, 8(10):13353-13359. [9] SUN C, HU A, WANG S, et al.ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma[J]. Int J Oncol, 2020, 57(1):249-263. [10] ZHANG L, NIU H, YANG P, et al.Serum lnc34a is a potential prediction biomarker for bone metastasis in hepatocellular carcinoma patients[J]. BMC Cancer, 2021, 21(1):161. [11] SONG X, DU R, GUI H, et al.Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis[J]. Oncol Rep, 2020, 43(1):133-146. [12] LIANG H W, YANG X, WEN D Y, et al.Utility of miR 133a 3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta analysis and bioinformatics[J]. Mol Med Rep, 2018, 17(1):1469-1484. [13] LIU W C, LI Z Q, LUO Z W, et al.Machine learning for the prediction of bone metastasis in patients with newly diagnosed thyroid cancer[J]. Cancer Med, 2021, 10(8):2802-2811. [14] CHOW E, HOSKIN P, MITERA G, et al.Update of the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases[J]. Int J Radiat Oncol Biol Phys, 2012, 82(5):1730-1737. [15] ZHANG B, TANG B, GAO J, et al.A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients[J]. J Transl Med, 2020, 18(1):342. [16] WU B, HU C, KONG L.ASPM combined with KIF11 promotes the malignant progression of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway[J]. Exp Ther Med, 2021, 22(4):1154. [17] LIN P, LIANG L Y, DONG Y Z, et al.Identification of abnormal spindle microtubule assembly as a promising therapeutic target for osteosarcoma[J]. Orthop Surg, 2020, 12(6):1963-1970. [18] KJELLMAN P, LAGERCRANTZ S, HÖÖG A, et al. Gain of 1q and loss of 9q21.3-q32 are associated with a less favorable prognosis in papillary thyroid carcinoma[J]. Genes Chromosomes Cancer, 2001, 32(1):43-49. [19] LUO L, CHEN L, KE K, et al.High expression levels of CLEC4M indicate poor prognosis in patients with hepatocellular carcinoma[J]. Oncol Lett, 2020, 19(3):1711-1720. [20] YU Q, GAO K.CLEC4M overexpression inhibits progression and is associated with a favorable prognosis in hepatocellular carcinoma[J]. Mol Med Rep, 2020, 22(3):2245-2252. [21] FAN W, LIU T, CHEN W, et al. ECM1 Prevents Activation of Transforming Growth Factor β, Hepatic Stellate Cells,Fibrogenesis in Mice[J]. Gastroenterology, 2019, 157(5):1352-1367.e13. [22] XI S, ZHAO X, LIU W, et al.Bioinformatics analysis to reveal key biomarkers for early and late hepatocellular carcinoma[J]. Transl Cancer Res, 2020, 9(7):4070-4079. [23] MONGIAT M, FU J, OLDERSHAW R, et al.Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis[J]. J Biol Chem, 2003, 278(19):17491-17499. [24] HUMMELSHOJ T, MUNTHE-FOG L, MADSEN H O, et al.Polymorphisms in the FCN2 gene determine serum variation and function of Ficolin-2[J]. Hum Mol Genet, 2005, 14(12):1651-1658. [25] YANG G, LIANG Y, ZHENG T, et al. FCN2 inhibits epithelial-mesenchymal transition-induced metastasis of hepatocellular carcinoma via TGF-β/Smad signaling[J]. Cancer Lett, 2016, 10;378(2):80-86. [26] LUTZ S, BERK L, CHANG E, et al.Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline[J]. Int J Radiat Oncol Biol Phys, 2011, 79(4):965-976. [27] HAYASHI S, TANAKA H, HOSHI H.Palliative external-beam radiotherapy for bone metastases from hepatocellular carcinoma[J]. World J Hepatol, 2014, 6(12):923-929. [28] FUJIMORI A, YAOI T, OGI H, et al.Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans[J]. Biochem Biophys Res Commun, 2008, 369(3):953-957. [29] KATO T A, OKAYASU R, JEGGO P A, et al.ASPM influences DNA double-strand break repair and represents a potential target for radiotherapy[J]. Int J Radiat Biol, 2011, 87(12):1189-1195. [30] YANG M, LI J, GU P, et al.The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment[J]. Bioact Mater, 2020, 6(7):1973-1987. [31] RUFFELL B, COUSSENS L M.Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4):462-472. [32] YEUNG O W, LO C M, LING C C, et al.Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015, 62(3):607-616. [33] ZHANG Z, WANG Z, HUANG Y.Comprehensive analyses of the infiltrating immune cell landscape and its clinical significance in hepatocellular carcinoma[J]. Int J Gen Med, 2021, 14:4695-4704. [34] YEUNG O W, LO C M, LINg C C, et al.Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015, 62(3):607-616. [35] JAROSZ-BIEJ M, SMOLARCZYK R, CICHOŃ T, et al.Tumor microenvironment as a "Game Changer" in cancer radiotherapy[J]. Int J Mol Sci, 2019, 20(13):3212. [36] RAHAL O M, WOLFE A R, MANDAL P K, et al.Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 100(4):1034-1043. |